Under review as a conference paper

GROWING WITH YOUR EMBODIED AGENT: A
HUMAN-IN-THE-LOOP LIFELONG CODE GENERATION
FRAMEWORK FOR LONG-HORIZON MANIPULATION
SKILLS

Yuan Meng Zhenguo Sun

School of Computation, Information and Technology Beijing Academy of Artificial Intelligence (BAAI)
Technical University of Munich Beijing, China

Munich, Germany zgsun@baai.ac.cn

y.meng@tum.de

Max Fest Xukun Li
School of Computation, Information and Technology School of Computation, Information and Technology
Technical University of Munich Technical University of Munich
Munich, Germany Munich, Germany
max.fest@tum.de xukun.li@gmail.com
Zhenshan Bing * Alois Knoll
The State Key Laboratory for Novel Software Technology School of Computation, Information and Technology
Nanjing University Technical University of Munich
Suzhou, China Munich, Germany
bing@nju.edu.cn k@tum.de
ABSTRACT

Large language models (LLMs)-based code generation for robotic manipulation
has recently shown promise by directly translating human instructions into exe-
cutable code, but existing approaches are limited by language ambiguity, noisy
outputs, and limited context windows, which makes long-horizon tasks hard to
solve. While closed-loop feedback has been explored, approaches that rely solely
on LLM guidance frequently fail in extremely long-horizon scenarios due to
LLMs’ limited reasoning capability in the robotic domain, where such issues
are often simple for humans to identify. Moreover, corrected knowledge is often
stored in improper formats, restricting generalization and causing catastrophic for-
getting, which highlights the need for learning reusable and extendable skills. To
address these issues, we propose a human-in-the-loop lifelong skill learning and
code generation framework that encodes feedback into reusable skills and extends
their functionality over time. An external memory with Retrieval-Augmented
Generation and a hint mechanism supports dynamic reuse, enabling robust per-
formance on long-horizon tasks. Experiments on Ravens, Franka Kitchen, and
MetaWorld, as well as real-world settings, show that our framework achieves a
0.93 success rate (up to 27% higher than baselines) and a 42% efficiency im-
provement in feedback rounds. It can robustly solve extremely long-horizon tasks
such as “build a house”, which requires planning over 20 primitivesm

*Corresponding author
!Code will be open-sourced upon acceptance.

Under review as a conference paper

Long Horizon Manipulation Tasks

You should try to preserve the previous functionality.

2
Task- ific pl. 1l
Ve rask-specific plan deployment
& § ,
TN
§ 7
& LYRA -) . o
B I)Emm
Task code plan generation
@ Skill storage:

Agent Memory
Skills & examples retrieval

Figure 1: Framework overview: human-in-the-loop lifelong skill learning and task deployment.

1 INTRODUCTION

Large language models (LLMs) and vision-language models (VLMs) have become integral to
robotic manipulation due to their robust commonsense knowledge and advanced reasoning capa-
bilities. Early approaches |Co-Reyes et al.| (2018); [Lynch et al.| (2023)); Liu et al.| (2023) relied on
language embeddings conditioned within reinforcement learning or imitation learning to align robot
actions with human commands. These methods often struggled with limited data efficiency and
poor generalization. With the rapid progress of LLMs such as GPT, a natural direction has been to
integrate them into the pipeline for task decomposition and language grounding Zhang et al.|(2023);
Huang et al.[(2023));|Guo et al.[(2024). In this setting, an LLM decomposes a complex manipulation
task into sub-tasks and invokes a pre-trained language-conditioned policy to execute low-level prim-
itives. This approach assumes that the pre-trained policy can carry out each motion precisely, yet in
practice, this is rarely possible due to environmental perturbations and imperfect policy design. An-
other direction for advancing human-level robotic manipulation is to adopt LLM or VLM backbones
for large-scale pretraining on robotic data, creating end-to-end vision—language—action (VLA) foun-
dation models Kim et al.|(2024); Black et al.| (2024); Bjorck et al.| (2025). However, robotic data
is far more limited than in computer vision or natural language, leading to data sparsity. Training
such large models (often with at least 7B parameters) also demands enormous computational re-
sources and makes deployment on edge devices difficult. These factors have slowed progress in this
line of research. Alternatively, well-pretrained LLMs already possess strong instruction-following
capabilities and can directly generate policy code as an action representation for robot control.

Using LLMs for code generation in robotic manipulation |Zhang et al.| (2025)) has shown strong po-
tential in embodied Al. Approaches like Code-as-Policies (CaP) [Liang et al.| (2023)); [Chen et al.
(2024); Mu et al.| (2024) translate human instructions into executable Python code with fixed sets of
perception and control primitives, enabling rapid deployment of behaviors. Despite this progress,
current methods face key limitations: (1) LLM outputs are often noisy and error-prone in long-
horizon planning. (2) Natural language is inherently ambiguous, so the agent may not always cap-
ture the user’s intention. (3) Agents are restricted by pre-defined primitives and handcrafted prompts,
and the limited context window prevents scaling with many examples. As a result, agents struggle
with complex long-horizon tasks. Prior works |Liang et al.[(2024); [Zhi et al.| (2025); Meng et al.
(2025) incorporate feedback to improve robustness, but these do not constitute true “learning”, since
verifiers must repeat the same feedback for seen tasks in the future. In code generation, learning can
be enabled by dynamically adjusting prompts to support LLM in-context adaptation. This raises two
key questions. The first question is how to store and reuse knowledge from feedback. Updating
the prompt directly |Arenas et al.| (2024) can cause catastrophic forgetting, where performance on
earlier tasks drops sharply. Extracting insights across tasks |[Zhao et al.| (2024); [Zha et al.| (2024)
produces ambiguous, task-specific knowledge, lacking in generalization to unseen tasks. Saving
flat code offers flexibility for modification, but repeated changes often introduce noise and errors,
making long-horizon generation unstable. A more stable alternative is to encapsulate temporally ex-
tended behaviors as skill functions, where adjusting function parameters offers both flexibility and
generalization while preserving stability. This makes skills a promising choice for storing feedback
knowledge. The second question is what type of feedback is most efficient during interaction.
Language feedback is a convenient interface, but feedback generated solely by LLMs |Arenas et al.
(2024); [Wang et al| (2023); [Meng et al.| (2025) is often unreliable, as it may diverge from human
preferences or fail in extremely long-horizon reasoning Wang et al.| (2023)). Human-provided feed-

Under review as a conference paper

back, in contrast, is more robust: errors in robotic tasks are usually easy for humans to identify,
evaluate, and correct. Moreover, the feedback can be tested and verified within seconds in robotic
code generation, whereas training traditional deep learning methods often requires hours or even
days. This reliability and efficiency highlight the unique advantage of involving humans to guide
robotic skill learning.

Motivated by these questions, we propose a human-in-the-loop framework that encodes user feed-
back into reusable skills and extends their functionality through a user-designed curriculum, en-
abling preference-aligned lifelong skill learning (Fig. [T). Learned skills and examples are stored
in an external memory to prevent catastrophic forgetting and support reuse. For long-horizon task
planning, our framework employs Retrieval-Augmented Generation (RAG) to retrieve relevant skills
and examples, enabling dynamic in-context learning. In addition, a simple yet effective hint mech-
anism allows users to guide the agent when retrieval alone is insufficient, ensuring that only the
most relevant skills are applied, thereby improving efficiency and reducing interference from irrel-
evant data. We validate the effectiveness of the framework through experiments in both simulation
benchmarks (Ravens, Franka-Kitchen, and MetaWorld) and real-world settings using a Franka FR3
across diverse long-horizon tasks. Empirical analysis shows a 0.93 success rate, up to 27% higher
than baselines, and a 42% efficiency improvement in correction rounds compared with LLM-based
closed-loop methods. Notably, the framework can robustly solve extremely long-horizon tasks such
as “build a house”, which requires planning over 20 primitives.

To summarize, our contributions are threefold: (1) Human-in-the-loop lifelong skill learn-
ing: A framework that incorporates human corrections and a user-designed curriculum to extend
skills while preserving previous functionalities, ensuring preference-aligned lifelong learning. (2)
Memory-augmented skill retrieval: An external memory that stores learned skills and examples,
combined with RAG and user-provided “hints” for dynamic in-context learning. (3) Challenging
extreme long-horizon tasks: Demonstrating the first successful solution to the “build a house”
task requiring over 20 primitives, validated across both simulation and real-world settings. We call
our framework LYRA: A Lifelong learning code sYnthesis framework with human-in-the-loop for
Robotic long-horizon skill Acquisition.

2 METHOD

In this section, we first introduce the preliminaries, then describe how our framework learns skills
and applies them to downstream tasks.

2.1 PRELIMINARIES

Code generation for robotic manipulation can be modelled as using an LLM f to map a natural
language instruction [to a robot control code ¢, i.e., f(I) = ¢, where f is termed a Language Model
Program (LMP) in prior work [Liang et al.| (2023). Each code c is achieved by multiple behaviours
b; thus, f can also be viewed as a mapping from [to b. A behaviour b is defined as a desirable or
semantically meaningful motion (e.g., picking up an object), and the set of all such behaviours is
denoted by B. In our work, we argue that behaviours b requiring no variation can be encapsulated
as skills that reliably elicit these behaviours. We denote the skill space as Z and state parameters as
s. Importantly, a skill z € Z may also build on other skills:

Definition 1: A skill z € Z is a function b ~ z(s) which induces a specific behaviour b.

It is worth noting that although the task code c generated by the agent represents a sequence of
behaviors to accomplish a task, it is not equivalent to a skill. We define a fask (I, sg) by a natural
language instruction ! and an initial environment state sg, which together form the main interface
between the user and the agent. When a task is successfully completed with user feedback, we
extend this tuple to (I, sq, ¢, sT), where c¢ is the task-specific code (often flat, process-oriented) and
st is the achieved final state. In practice, ¢ may call skills z to complete the task, and its execution
should produce an evaluable task result.

To align the skill output with the user’s desired behaviour b, the agent adjusts the function details
under user guidance. We call this process learning the skill. Importantly, here, learning does not

Under review as a conference paper

refer to neural network fitting on data, but instead follows a broader concept in computer science

Mitchell (2006):

Definition 2: An agent is said to learn if it produces better behavioural responses b to an instruction
l, as evaluated by a human.

Based on these definitions, the learning pipeline should answer: (1) How to encode human-provided
feedback into skills that align with user preferences? (2) How to extend skills through lifelong
learning while enabling dynamic in-context adaptation? (3) How to reuse and transfer learned skills
to unseen long-horizon tasks?

Phase I: Preference-aligned Skill Acquisition

def slack))\ocksiblocks)
for blocks[1]

pm msLoueccnd

del stack blocks(blocks)

def stack blocks(blocks):

ck blocks(blocks @

cur_pose = blocks[0].Pose g2rad(45|

RO | e o | o
block Pose, cur_pose)
\» cur.pose.z += block.size[2) \»
p learn a skill that stack p This is not stack. You p Please stack the blocks p Please stack blocks at a p Bravo! This is
Y/ | the blocks, use 4 ran- Y/ | need to stack ALL the Y/ | corner-to-corner with re- V/ | given place, e.g., table Y/ | what | want.
User | dom blocks for User | blocks in a tower. User |quired angle, e.g., 45 User | center. User

setup. degree.

Phase II: Lifelong Learning-oriented Capability Extension

<> Base skill: make cross <> Base skill:
stack Sma"%‘g stack_blocks around blue block move_to_reference
JUSer designed curriculum (t5:550) JUSer designed curriculum

stack zwgzag 'cwer

—> ce —>

) Y
stack two towers by color ’ arrange in a clr:\e ’
Memory
</>

buid a {i * K) pyram\d Examples

Skills Retrival
€2 Generation

/O %/ [You should try to preserve the previous functionality.
User

J‘@

Agent N Agem

build temple

write hello = make smiley face place the kettle use hammer build house
=
A2
Task Plans Task Plans 3] . i r-
- 1 me
G = omEsem @
= “CLR"
build house stack jenga tower open cabinet assembly stack jenga tower write “ICLR

Figure 2: Structure of the proposed human-in-the-loop lifelong skill learning pipeline.

2.2 PREFERENCE-ALIGNED SKILL ACQUISITION

Based on the above questions, we design a three-phase pipeline to preserve and utilize human-in-the-
loop corrections for preference-aligned lifelong skill learning in long-horizon manipulation (Fig. [2)).
The phases are: (1) preference-aligned skill acquisition, (2) lifelong capability extension, and (3)
task-specific retrieval and planning.

To learn a new skill, three elements must be clarified: (1) what skill to learn, (2) the initial task
environment, and (3) the expected functionality or behavior. Asking an LLM to infer all of this
at once is impractical due to language ambiguity, so we adopt multi-turn interaction. The agent is
initiated with a fixed set of skills z € Zy, along with examples e = (I, ¢) € & that demonstrate their
use, enabling basic environment interaction. The user first describes the skill in natural language,
and the LLM invokes the “skill_parse” API to generate a Python function header with suggested
parameters (e.g., “def stack_blocks(blocks, start_pose):”’). The user can accept or refine this defini-
tion. Once accepted, the LLM requests a base environment setup, and generates a corresponding
task scenario. The complexity of the task is user-controlled, but overly complex tasks (over 6-8
steps) hinder skill acquisition when the agent’s ability is still limited. We therefore recommend two
principles: (1) tasks should be simple, ideally completed within 1-4 primitives, and (2) tasks should

Under review as a conference paper

allow flexibility so that one skill can adapt to diverse requirements. After the setup, the user and the
LLM agent will work together to “learn” the skill. The agent generates candidate code, deploys it
in simulation, and displays results in real time. The user then accepts, rejects, or provides free-form
feedback to refine the skill. User tests multiple requirements within the same scenario to check if the
skill and its parameters generalize. For example, in Fig.[2] Phase I, the user guides the agent to stack
blocks under different conditions such as edge alignment, tower positioning, or rotation. During this
phase, the agent can freely modify implementation details under the reserved skill name, with
the objective of producing a functional, preference-aligned skill. This forms the foundation for later
phases of lifelong skill learning and capability extension.

2.3 LIFELONG LEARNING-ORIENTED CAPABILITY EXTENSION

Learning skills from a single task scenario is insufficient for complex long-horizon tasks, for two
main reasons: (1) Simple skills cannot handle variations beyond their learning distribution. For
example, a skill like “stack_blocks” for stacking four blocks at a fixed pose cannot generalize to
tasks such as building a {7 x j x k} structure or stacking multiple towers by color or size. (2) Directly
inserting learned skills into prompts risks hallucination, where LLMs may rewrite or fabricate code
during long-horizon interactive planning, leading to catastrophic forgetting of existing skills.

Inspired by lifelong learning, we extend the pipeline with a user-designed curriculum that enables
bottom-up skill functionality expansion (Fig. [2] Phase II). In this phase, the agent must: (1) solve
more complex user-defined task variations, (2) preserve and extend skill functionality to unseen
cases, and (3) store skills permanently for reuse. The learning process mirrors Phase I, with an
added meta-prompt that explicitly asks the agent to preserve prior functionality while adapting
to new tasks. Users should design tasks outside the original distribution and aligned with long-term
goals, guiding the agent to acquire foundational skills for future complex tasks. The agent can either
(1) create a new named skill that calls existing ones as nested functions, or (2) extend the current
skill using modularized code (e.g., if-else or match-case) to avoid overwriting. After adapting to
new tasks, the agent is re-evaluated on prior tasks; if performance is preserved, we can say that
lifelong learning is achieved. To further prevent forgetting and hallucination, both learned skills z
and explored successful examples (including task instruction and task plan) (,¢) € £ are stored in
external memory and retrieved via RAG during task planning.

2.4 TASK-SPECIFIC-ORIENTED RETRIEVAL AND PLANNING

In Fig. 2| Phase III, we enable long-horizon task-specific planning through in-context learning,
adapting general-purpose LLMs to specific tasks using two main prompt inputs: (1) few-shot ex-
amples & = {(l1,¢1), ..., (I, car)} that show mappings from instructions to task-specific code
plan, and (2) a set of skills Z = {z1, ..., 2y } that the agent can call to compose the plan c. Because
of context window limits, both |£| = M and |Z| = N are fixed. The goal is that the examples
and skills are representative enough for the agent to generalize to unseen pairs (', ¢’), assuming [’
reflects the human’s intent and the LLM can interpolate from £ and Z to produce the correct ¢'.

Key to our approach is dynamically managing the context window. As the number of examples
grows, appending all of them to the prompt is infeasible, and many are irrelevant. For example,
when solving “press the button”, examples about “open the drawer” add noise and overwhelm the
prompt. To address this, we use an external memory module with two vector databases: one for few-
shot examples (I, ¢) indexed by their instructions, and one for skills z indexed by their docstrings.
We implement this using ChromaDB and compute embeddings with OpenAl’s text-embeddings-3
Neelakantan et al.| (2022). For a new instruction I’, we retrieve the K = 10 most similar examples
based on cosine similarity and append them to the prompt. We also retrieve the relevant skill headers
from memory and include them in the prompt. Additionally, our framework introduces a simple yet
efficient mechanism for guiding the agent with a shared language format: hints. Hints allow users to
trigger retrieval from the library of known behaviours by specifying which previously learned skill
may help with the current task. This is especially useful during skill learning and task planning,
when the agent encounters unfamiliar instructions and must infer the required substeps, as in LLM-
based planning. As the number of skills | Z| and behaviours |€] grows, most are irrelevant, and hints
provide a way for the user to direct the agent toward the correct subset. If a required sub-behaviour

Under review as a conference paper

has not yet been learned and cannot be resolved with a hint, the failure signals the user to pause the
current skill and teach the missing sub-behaviour first.

With this pipeline, our framework can tackle extremely challenging long-horizon tasks such as
“build a house” and “stack a jenga tower”, which require more than 20 planning steps (Fig. 2] Phase
IIT left). We further validate our method on widely used benchmarks, including Metaworld and
Franka Kitchen, covering over 20 task variations where the framework consistently solves all tasks
(Fig. 2| Phase III middle). Finally, we deploy the framework in real-world settings on a franka FR3,
successfully completing diverse tasks such as building a house, writing “ICLR”, and generalizing to
the novel task “build a temple” (Fig. 2] Phase III right). It is worth noting that although we present
the learning pipeline in three phases, the process is not strictly linear. Whenever the agent cannot
handle the current task, the user can roll back to the skill learning or extension phase and iterate until
the agent meets the requirements. The overall skill learning process is summarized in Appendix [A]

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Our work focuses on tabletop long-horizon manipulation tasks. For fair comparison, we include
several code and language generation baselines in our experiments (More setup details in Appendix
[B). Recent work, Voyager [Wang et al| (2023), explores skill learning with LLM-based automatic
feedback, but it is designed for the Java-based game “Minecraft” with simple action primitives.
Adapting it for Python-based robotic manipulation is costly and impractical. Thus, we design a
variation of our framework that mirrors their idea, where an LLM provides feedback instead of
humans for final task plan generation. We also include a w/o memory version of our framework for
ablation that simulates the human-in-the-loop updates at the prompt level |Arenas et al.| (2024):

Code as Policy (CaP)|Liang et al|(2023)): A representative baseline for LLM-based open-loop code
generation without correction or retrieval.

LoHoRavens (GPT-40) Zhang et al.| (2023): A language-generation baseline with explicit LLM
feedback, using a pretrained RL policy CLIPort for execution.

DAHLIA Meng et al.| (2025): A state-of-the-art code generation framework with LLM-based
closed-loop control and incremental examples for in-context learning.

LYRA (Ours) w/ LLM feedback: A variation of our framework that relies on LLM feedback,
where RGB-D scenes before and after execution are given to LLM to determine task success and
provide feedback. This variation has access to our well-learned memory database.

LYRA (Ours) w/o memory: A variant without the retrieval module, where 25 out of 49 learned
skills and 25 out of 86 explored examples in Ravens are randomly sampled and appended until the
context window is filled. For Franka Kitchen and MetaWorld, we sample half of the learned skills
and examples at random to evaluate how irrelevant data affects feedback efficiency.

For simulation, we build on the PyBullet-based Ravens benchmark Zeng et al.|(2021)); Zhang et al.
(2023)), where a UES robot manipulates multiple tabletop objects. Following prior work [Zhang
et al.[(2023)), we allow LLMs to set up tasks so scenarios can be modified by user intention. To test
scalability, we also evaluate on Franka Kitchen Gupta et al.|(2020) (long-horizon tasks with a Franka
Panda in a kitchen scene) and Metaworld |Yu et al|(2020) (Sawyer with diverse tabletop tasks). In
the real world, we deploy the agents on a Franka FR3 and validate performance on challenging long-
horizon tasks. As our simulation tasks rely on privileged information (e.g., object pose and size), we
adopt state-of-the-art perception foundation models |[Ren et al.| (2024); Wen et al| (2024) to obtain
open-world object data. Details of the real-world deployment are provided in Appendix [C|

3.2 SKILL LEARNING WITH HUMAN-IN-THE-LOOP

To analyze how human-in-the-loop skill learning improves performance, we evaluate all models on
the customized Ravens with six long-horizon tasks for a case study (Fig. [3(a), setup in Appendix
[B.3). For models with feedback, we report task plan results after up to five iterations. For CaP with
open-loop control, we report the outcome of each fresh generation. All models are tested with 20

Under review as a conference paper

Baselines LYRA (Ours)
a ‘
next to reference

LYRA (Ours)

LYRA (Ours) w/o memory DAHLIA
stack blocks |\, 7 make a face o100
H LYRA (Ours) w/ LLM feedback
7 (Ours)
) \\ DAHLIA (GPT-40)
A< >l

DAHLIA

i M LoHoRavens (GPT-40)

build {i * j * k} {structure} jenga tower

W CaP (GPT-40)

build a house

Figure 3: Empirical analysis of skill learning. (a) Case study: Baseline comparison on Ravens long-
horizon tasks, reported as the average success rate over 20 attempts. (b)—(m) Snapshots comparison:
why human-in-the-loop is essential for skill learning and how it improves performance.

attempts, and we report the average success rate (SR) for comparison. As shown in the figure, CaP
performs well only on tasks included in the prompt examples. For tasks outside the prompts, such as
“build a4 x 3 x 2 pyramid” in 3 of 5 unseen structure building tasks, it fails to generalize, achieving
only a 0.45 SR. Compared with open-loop CaP, LoHoRavens and DAHLIA improve performance
by using LLMs for closed-loop feedback. However, relying solely on LLM feedback can cause the
agent to get stuck in long-horizon planning. Our framework variation, LYRA w/ LLM feedback,
further underscores this issue. Although the agent has access to all learned skills and examples in
the database, the LLM’s limited reasoning makes it uncertain about which skills to apply or what
the agent can actually perform. As a result, this causes a drop in performance, and the agent may
get stuck on extremely long-horizon tasks, with an average SR of only 0.77. Moreover, LYRA w/o
memory simulates methods that extend data directly in the prompt. With well-learned skills and
examples, this variant represents the upper bound of such methods. As shown in the figure, its
performance drops substantially due to the limited prompt length, and unrelated examples in the
prompt further interfere with reasoning, resulting in an average SR of 0.66. By comparison, our
framework achieves a high SR of 0.93, with up to 27% SR improvement over the variant models.

Relying only on success rate is limited, as it cannot capture alignment with user preferences. A key
contribution of our approach is representing human preferences from language corrections in a form
that can be preserved and reused through skill inheritance. Snapshots in Fig. [3(b)—(m) show how
user feedback improves task performance beyond what SR reflects. For example, in (b) vs. (d), (e),
and (f) vs. (h), (i), the baseline places blocks at the target positions, but their poses and distances do
not match user expectations. Unlike LLM-only feedback, which often labels sub-optimal results as
successful, user interventions guide the agent to acquire precise skills (e.g., stacking corner-to-corner
or aligning blocks with fixed spacing) that lead to more reliable and preference-aligned outcomes.
Fig. Ekj), (k) vs. (1), (m) further highlights the reliability of human-in-the-loop skill learning. In
this example case, we observe false positives from LLM evaluation, where incomplete tasks are
incorrectly marked as successful. For instance, in Fig.), DAHLIA stacks long blocks in the same
direction for a Jenga tower. Although clearly incorrect to a human, the LLM still labels it as correct,
raising doubts about evaluation reliability. In contrast, our framework reuses the “build jenga layer”
skill, which was learned earlier with human guidance in a simpler scene, to stack a stable Jenga
tower. Results for all Ravens tasks refer to Appendix [D]and supplementary video.

Skill-oriented human-in-the-loop feedback is more efficient than task-specific flat code feedback
from LLMs. Fig. @fa) shows the average number of corrections (NoC) across Franka Kitchen (4
subtasks) and MetaWorld (20 tasks). A lower NoC means the framework achieves success and
aligns with user expectations more efficiently. Both DAHLIA and our LYRA variant w/o memory
require more feedback iterations (4.75 and 5.00 in Franka Kitchen) compared to our LYRA frame-
work (2.75). Although LYRA w/o memory has access to learned skills, the presence of irrelevant
information in the prompt hinders reasoning and leads to more feedback iterations. In MetaWorld,
DAHLIA struggles to complete several tasks within 10 feedback rounds (e.g., hammer), showing
the difficulty of fixing low-level execution errors through LLM feedback alone. By comparison, our
LYRA framework achieves the fewest corrections in both benchmarks (2.75 in Franka Kitchen and
2.55 in MetaWorld), yielding an average 42% efficiency improvement over baselines. This gain

Under review as a conference paper

comes not only from learning skills with human guidance, but also from our hint mechanism. Hints
let users guide the agent when RAG retrieval fails or when irrelevant data is retrieved. By clarifying
what the agent can do and which skills to apply, hints reduce unnecessary corrections compared to
LLM feedback. Fig.d[(b)—(i) shows snapshots of our framework’s performance on both benchmarks
(Full results in Appendix [D]and supplementary video).

a Average number of corrections (NoC) ({)

Framework Franka Kitchen (4) MetaWorld (MT20)
DAHLIA 4.75 > 107
LYRA (Ours) w/o memory 5.00 4.15
LYRA (Ours) 2.75 2.55

fSome tasks may not be completed within 10 feedback rounds. For example, in the
hammer task, an incorrect grasp may cause the hammer to drop, which LLM-based
closed-loop feedback systems may struggle to correct, often leading to task failure.

oor ope

Figure 4: Scalability and feedback efficiency validation. (a) Average number of corrections for
LLM-based flat code generation versus our human-in-the-loop skill code generation. (b)—(i) Snap-
shots from Franka Kitchen and MetaWorld; additional results are provided in Appendix [D]

3.3 CAN YOU BUILD A HOUSE?

To demonstrate how user-guided lifelong learning expands skill capabilities and enables challenging
long-horizon tasks, we present the case study “build a house.” As shown in Fig. [5[a), the task re-
quired 12 skills developed bottom-up from core primitives (orange), including 7 learned specifically
for house building (light green) and others inherited from prior tasks (yellow). Starting from the
chaotic initial scene (Fig. [5(b)), the task can be decomposed top-down into three subtasks: organiz-
ing the scene (Fig. [5]¢c)), building the base (Fig.[5[(d)), and constructing the roof (Fig.5[e)). Unlike
LLM-only closed-loop methods that directly generate flat code without awareness of required skills,
our framework acquires intermediate skills such as stacking blocks corner-to-corner or aligning them
with precise distance and orientation, which can be further extended to build cubes and more com-
plex structures. Through lifelong learning, users introduce increasingly complex tasks, and the agent
expands its capability by reusing existing skills, either nesting them within new ones or modularizing
them to develop extended functionality. Both learned skills and examples are stored in an external
database, enabling relevant information to be retrieved and appended to the prompt. This prevents
catastrophic forgetting and gradually builds a complex skill tree for task planning. This integration
of top-down planning and bottom-up skill learning relies on human verifiers’ global awareness of
which skills are necessary, a capability current LLM verifiers lack, as they tend to decompose tasks
in a single direction and often get stuck in sub-optimal solutions. To the best of our knowledge, our
framework is the first to successfully accomplish the “build a house” task, with full implementation
details provided in Appendix [E]

get blocks.by_color

l

get.objects.

——
get.object color

build house base

make line_of blocks next.to make.line.with.blocks

!

move.block next to_reference

place_roof tles

=%

getobject pose put first.on second get.object size

Figure 5: (a) Skill tree of build a house. (b)-(i) Snapshots of task build a house, where (c¢)-(e) show
sub-skills acquired from bottom-up lifelong skill expansion, and (f)-(h) show how they are deployed
and reused in the task-specific plan generation. Full code implementation in Appendix

skills learned specifically for building a house skills learned independently of building a house Core primitives

Under review as a conference paper

3.4 REAL-WORLD PERFORMANCE

The skills learned through our pipeline are embodiment-agnostic and can be deployed on heteroge-
neous robot arms, enabling smooth transfer to real-world settings. We provide ROS2-based control
APIs for the Franka FR3 with consistent naming and variables to match the simulation environment.
As shown in Fig. [p[a)—(d), our framework allows the agent to robustly perform challenging long-
horizon real-world tasks, including building a house, stacking a Jenga tower, and writing “ICLR”.
These tasks can last over 12 minutes, highlighting the framework’s effectiveness in real-world de-
ployment. We also test generalization to unseen tasks, such as “construct a temple”. Within five
rounds of user guidance, the agent reorganizes the scene, builds the temple base, layers, and head by
retrieving and combining existing skills, and successfully completes the task. Full results, including
“make a human face” and comparisons with baseline models in real-world settings, are provided in
Appendix [F]and supplementary video.

Figure 6: Real-world demonstrations. Snapshots of (a) building a house, (b) stacking a Jenga tower,
(¢) writing “ICLR”, and (d) constructing a temple. Full real-world results refer to Appendix [F

4 RELATED WORKS

Code generation in embodied AI. LLM-based code generation has shown promise by directly
translating human intentions into executable code Zhang et al. (2025); Mu et al.[(2024). In the
game world domain, Voyager [Wang et al.| (2023) combines an automatic curriculum with a self-
verification pipeline, dynamically updating prompts through an extensible skill library, and achieves
state-of-the-art performance in Minecraft. In robotics, CaP [Liang et al.| (2023) is an early approach
that lets an LLM generate Python calls to perception and control APIs, enabling robots to grasp
objects or navigate from a natural language command. RoboScript|/Chen et al.| (2024)) extends this
idea by integrating a full ROS pipeline that connects object detection, grasping, and motion planning.
However, open-loop control limits the applicability of these methods to complex long-horizon tasks.
With recent advances in LLM reasoning, some works now use LLMs as evaluators to provide task-
level feedback |Zhang et al.|(2023); Meng et al.|(2025); Zhi et al.[(2025). However, these approaches
neglect human preferences and often fail on extremely long-horizon tasks, leaving the role of humans
as verifiers in robotic code generation unexplored.

Robotic manipulation with language feedback. Earlier work in interactive imitation learning
shows that human feedback can quickly correct trajectory-level errors |Co-Reyes et al.| (2018)); |Chis-
ari et al.| (2022); [Cu1 et al.| (2023)); Lynch et al.| (2023); [Liu et al.| (2023). However, these methods
usually rely on narrowly defined correction types and fail on out-of-distribution tasks. More re-
cent language generation approaches use LLMs for task decomposition and feedback, while relying
on pretrained policies for primitive execution [Zhang et al.| (2023)); |Huang et al.| (2023); |Guo et al.
(2024). These approaches often suffer from environmental perturbations and the limited perfor-
mance of pretrained policies. Some works also explore humans as verifiers who patch planning
mistakes. For example, LMPC Liang et al.|(2024) fine-tunes a code-writing model with teacher chat
corrections to reduce the number of attempts, but it only generalizes to the taught task and requires
large interactive training datasets. PromptBook |Arenas et al.|(2024) leverages human corrections to
refine LLM prompts, achieving robust performance in real-world pick-and-place tasks. However,
its effectiveness is limited to the trained scenarios, and it may suffer from catastrophic forgetting
when prompts are overwritten. Overall, most methods integrate feedback at the data or prompt
level, which makes them prone to catastrophic forgetting in long-horizon tasks generation requiring
multi-round iterations.

Large-scale robotic foundation models. VLA models|Ma et al.|(2024) roughly come in two cate-
gories: end-to-end models that map multi-modal inputs straight to motor commands and hierarchical

Under review as a conference paper

models that add a slower high-level planner on top of a fast control policy. Typical examples include
RT-H Belkhale et al.| (2024)), OpenVLA |[Kim et al.| (2024; 2025), 7.5 Black et al.[(2024); |Intelli-
gence et al.| (2025), Gemini-Robotics [Ieam et al.| (2025) and GROOT N1 Bjorck et al.| (2025) etc.
Such models require massive expert demonstrations and large-scale computational resources for
pre-training, which limits their generalization performance. A few studies try to boost data coverage
with RAG techniques that pull extra non-robot demonstrations from an external database |Ju et al.
(2024); Xu et al.| (2024); Kuang et al.| (2024), but the retrieved data often fail to stay aligned with
the robot’s current view, state, and goal. Our framework does not try to outcompute these giants; in-
stead, it offers a different path by producing generalized reusable code skills that can be recombined
on the fly, giving robust behaviour in unstructured environments.

5 CONCLUSION

We presented a human-in-the-loop lifelong skill learning framework that encodes user feedback
into reusable and extendable skills, enabling agents to preserve knowledge, extend capabilities, and
solve challenging long-horizon tasks such as building a house. Unlike prior closed-loop methods,
our approach integrates skill inheritance, external memory, and a hint-guided retrieval mechanism
to align learning with human preferences. Experiments across Ravens, Franka Kitchen, and Meta-
World benchmarks, as well as real-world settings, demonstrate strong performance, achieving a
0.93 success rate (up to 27% higher than baselines) and a 42% efficiency improvement in correction
rounds. Our framework robustly handles long-horizon tasks in both simulation and reality, including
building a house, stacking a Jenga tower, writing “ICLR,” and generalizing to constructing a temple.
Future work will focus on incorporating advanced multimodal RAG for retrieval and extending to
dual-arm collaboration and more complex robotic setups.

LLM USAGE STATEMENT

In this study, we employ OpenAl GPT-40 as the embodied agent for robot skill code generation.
OpenAl ChatGPT was used solely for sentence-level polishing and grammar correction. All polished
content was carefully proofread and verified by the authors for accuracy.

REPRODUCIBILITY STATEMENT

An anonymous code repository is provided as an attachment. To support reproducibility, we include
a pre-built skill memory (“trained”) that allows readers to replicate our results. This code and data
will also be open-sourced upon acceptance.

REFERENCES

Montserrat Gonzalez Arenas, Ted Xiao, Sumeet Singh, Vidhi Jain, Allen Ren, Quan Vuong, Jake
Varley, Alexander Herzog, Isabel Leal, Sean Kirmani, et al. How to prompt your robot: A prompt-
book for manipulation skills with code as policies. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4340-4348. IEEE, 2024.

Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using language. arXiv
preprint arXiv:2403.01823, 2024.

Johan Bjorck, Fernando Castafieda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. GrOOt nl: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. my: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Junting Chen, Yao Mu, Qiaojun Yu, Tianming Wei, Silang Wu, Zhecheng Yuan, Zhixuan Liang,
Chao Yang, Kaipeng Zhang, Wenqi Shao, et al. Roboscript: Code generation for free-form ma-
nipulation tasks across real and simulation. CoRR, 2024.

10

Under review as a conference paper

Eugenio Chisari, Tim Welschehold, Joschka Boedecker, Wolfram Burgard, and Abhinav Valada.
Correct me if i am wrong: Interactive learning for robotic manipulation. IEEE Robotics and
Automation Letters, 7(2):3695-3702, 2022.

John D Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, Jacob Andreas, John DeNero,
Pieter Abbeel, and Sergey Levine. Guiding policies with language via meta-learning. In Interna-
tional Conference on Learning Representations, 2018.

Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy Liang, and Dorsa Sadigh.
No, to the right: Online language corrections for robotic manipulation via shared autonomy. In
Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, pp.
93-101, 2023.

Yanjiang Guo, Yen-Jen Wang, Lihan Zha, and Jianyu Chen. Doremi: Grounding language model
by detecting and recovering from plan-execution misalignment. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 12124-12131. IEEE, 2024.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning, pp. 1025-1037. PMLR, 2020.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. In Conference on Robot Learning, pp. 1769-1782. PMLR, 2023.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. 7y 5: a vision-language-action
model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Yuanchen Ju, Kaizhe Hu, Guowei Zhang, Gu Zhang, Mingrun Jiang, and Huazhe Xu. Robo-abc:
Affordance generalization beyond categories via semantic correspondence for robot manipulation.
In European Conference on Computer Vision, pp. 222-239. Springer, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
vision-language-action model. In 8th Annual Conference on Robot Learning, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Yuxuan Kuang, Junjie Ye, Haoran Geng, Jiageng Mao, Congyue Deng, Leonidas Guibas, He Wang,
and Yue Wang. Ram: Retrieval-based affordance transfer for generalizable zero-shot robotic
manipulation. In 8th Annual Conference on Robot Learning, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493-9500. IEEE, 2023.

Jacky Liang, Fei Xia, Wenhao Yu, Andy Zeng, Montserrat Gonzalez Arenas, Maria Attarian, Maria
Bauza, Matthew Bennice, Alex Bewley, Adil Dostmohamed, et al. Learning to learn faster from
human feedback with language model predictive control. CoRR, 2024.

Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, and Yuke Zhu. Robot learning on the
job: Human-in-the-loop autonomy and learning during deployment. In Robotics: Science and
Systems, 2023.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE Robotics
and Automation Letters, 2023.

Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-
language-action models for embodied ai. arXiv preprint arXiv:2405.14093, 2024.

11

Under review as a conference paper

Yuan Meng, Xiangtong Yao, Haihui Ye, Yirui Zhou, Shengqgiang Zhang, Zhenshan Bing, and Alois
Knoll. Data-agnostic robotic long-horizon manipulation with vision-language-guided closed-loop
feedback. arXiv preprint arXiv:2503.21969, 2025.

Tom Michael Mitchell. The discipline of machine learning, volume 9. Carnegie Mellon University,
School of Computer Science, Machine Learning . .., 2006.

Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian GE, Runjian Chen,
Zhixuan Liang, Mengkang Hu, Chaofan Tao, et al. Robocodex: multimodal code generation
for robotic behavior synthesis. In Proceedings of the 41st International Conference on Machine
Learning, pp. 36434-36454, 2024.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qim-
ing Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159, 2024.

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. arXiv preprint
arXiv:2503.20020, 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation
and tracking of novel objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 17868—17879, 2024.

Weiye Xu, Min Wang, Wengang Zhou, and Houqiang Li. P-rag: Progressive retrieval augmented
generation for planning on embodied everyday task. In Proceedings of the 32nd ACM Interna-
tional Conference on Multimedia, pp. 6969—6978, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094-1100. PMLR, 2020.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Re-
arranging the visual world for robotic manipulation. In Conference on Robot Learning, pp. 726—
747. PMLR, 2021.

Lihan Zha, Yuchen Cui, Li-Heng Lin, Minae Kwon, Montserrat Gonzalez Arenas, Andy Zeng, Fei
Xia, and Dorsa Sadigh. Distilling and retrieving generalizable knowledge for robot manipulation
via language corrections. In 2024 IEEE international conference on robotics and automation
(ICRA), pp. 15172-15179. IEEE, 2024.

Kun Zhang, Peng Yun, Jun Cen, Junhao Cai, Didi Zhu, Hangjie Yuan, Chao Zhao, Tao Feng,
Michael Yu Wang, Qifeng Chen, et al. Generative artificial intelligence in robotic manipulation:
A survey. CoRR, 2025.

Shenggiang Zhang, Philipp Wicke, Liitfi Kerem Senel, Luis Figueredo, Abdeldjallil Naceri,
Sami Haddadin, Barbara Plank, and Hinrich Schiitze. Lohoravens: A long-horizon language-
conditioned benchmark for robotic tabletop manipulation. arXiv preprint arXiv:2310.12020,
2023.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632-19642, 2024.

12

Under review as a conference paper

Peiyuan Zhi, Zhiyuan Zhang, Yu Zhao, Muzhi Han, Zeyu Zhang, Zhitian Li, Ziyuan Jiao, Baoxiong
Jia, and Siyuan Huang. Closed-loop open-vocabulary mobile manipulation with gpt-4v. In 2025
IEEE International Conference on Robotics and Automation (ICRA), pp. 4761-4767. IEEE, 2025.

13

Under review as a conference paper

Appendices

CONTENTS

A" Pseudo code of algorithm|

(B Framework setup|

[B.1 Framework prompting|

[B.2 Baseline model setup|

[B.3 Raventaskssetup

|C Real-world experiment setup)

[C.1 Hardwaresetting]

. Perception|

[C.3 Deployment

(D Simulation performance

[E_Build a housel

' Real-worl monstration

A PSEUDO CODE OF ALGORITHM

~N O NN

O o0 o0 R

Algorithm 1 Interactive skill learning

1: Initialize Skill Library Z; and Examples &
2: z + SkillParser(skill_description)
3. while True do

4: l < task_description
5: so + TaskSetup(initial_state_description)
6: correction <— &
7: c—J
8: while True do
9: examples < (I, ¢})i=1,..k €&
10: ¢, z <+ Agent(l, ¢, z, correction, examples)
11: st <+ Rollout(c)
12: if st is aligned with [then
13: E=EU(,¢)
14: break
15: end if
16: update correction based on st

17: end while
18: end while
19: Update z in Z

> Choose current skill to learn

> Provide task instruction

> Set up the environment

> Set initial correction

> Set initial task-specific code

> Retrieval based on [and correction

> Roll out policy code

> Add example to library

> Update skill library

Under review as a conference paper

B FRAMEWORK SETUP

B.1 FRAMEWORK PROMPTING
Our framework and the baseline code generation methods rely on dynamic prompting for in-context

learning. Table [ST|lists the core primitives used in our framework, and the corresponding prompts
are shown below.

Table S1: List of the core-primitives for our agent to build on

Name Function

get_objects This function gets all objects in the environment. The
agent can retrieve specific properties of these objects with
the functions below.

get_object_color Returns the color of the block.
get_object_size Returns the size of the block.
get_object_pose Returns the pose of the block, given as a 3-dimensional

position vector, and a 4 dimensional quaternion rotation.

get_bbox Returns the axis-aligned bounding box of an object, to
simplify collision queries.

put_first_on_second The main pick-and-place primitive. It picks up an ob-
ject at the specified Pose, lifts it vertically to a speci-
fied height, moves along the x-y plane to a point directly
above the place Pose, then moves it down until it detects
contact.

move_end_effector_to Moves the end effector the specified position, and suction
gripper rotation.

We use python format strings for our prompts.

Listing 1: Main Actor prompts

actor_system_prompt = f"""
You write python code to control a robotic arm in a simulated environment, building on an existing API.
You will be given:

- a task for the robotic agent to solve
- api functions you may use to solve the task
- 1if available, examples of codes that solve prior similar tasks

You are supposed to write flat code to solve the task, i.e. do not write any functions.
DO NOT make any imports.

Adhere to the following basic types:
{get_core_types_text ()}

won

def actor_prompt (task, few_shot_examples: list[TaskExample], api: list[Skill]):
return f£"""
{get_few_shot_examples_string (few_shot_examples) }

{get_skill_string(api) }
The task is: {task}

Write flat code to solve the task.

wnn

def actor_iteration_prompt (feedback, examples: list[TaskExample] = []):
return f£"""
Rewrite the previous code to integrate the feedback: {feedback}.
{get_few_shot_examples_string (examg s)}

Only make changes that take into account this feedback.
wun

Listing 2: Skill Learning prompts

Under review as a conference paper

actor_skill_learning_system_prompt g
You write python code to control a robotic arm in a simulated environment,
We are trying to learn skills,

You will be given:

- a task for the robotic agent to solve

- the skill you are supposed to use to solve the task
You are supposed to complete the function, as well as flat,

def given_function(...) ->

N XA
<function code>

<task-specific code>

For example:

IN:

task: "put the red block on the green block"

skill:

def put_block_on_other_block (block: TaskObject, otherBlock: TaskObject):
\"\"\" places the block on top of otherBlock \"\"\"
pass

OUT:

def put_block_on_other_block (block: TaskObject, otherBlock: TaskObject):

\"\"\" places the block on top of otherBlock \"\"\"
put_first_on_second (get_object_pose (block), get_object_pose (otherBlock)
red_block = get_block (color="red")

green_block get_block (color="green")
put_block_on_other_block (red_block, green_block)

If the new task requires you to rewrite the function header,
to add arguments,
You should try to preserve the previous functionality though,
have previously been used to solve other tasks,

you may do so,

DO NOT make any imports.
DO NOT write any functions other than the given one.

Adhere to the following basic types:
{get_core_types_text ()}

def skill_learning_prompt (

task,
few_shot_examples: list[TaskExample],
skill: Skill,

other_useful_skills: list[Skill],

return f"""
The task is: {task}

The function you are supposed to implement is:

{str(skill)}

{get_few_shot_examples_string (few_shot_examples) }

The following skills may be useful in your implementation:
{"\n\n".join([skill.description for skill in other_useful_skills])}

Implement the function and solve the task, while trying to ensure that

nn

task-specific code,

building on an existing API.

and are using different tasks to test and effectively learn a specific skill.

as follows:

)

for example,

or to update the docstring with important usage information.
since the function might
which should remain solvable after changes.

prior tasks remain solvable.

Listing 3: Task Setup prompts

task_setup_api_string = """
def add_block(

self,

env: Environment,

color=None,
tuple[float,
Pose=None

size: 0. 0.04),

pose:

float, float] (0.04, 04,
)

\"\"\" adds a block of a given size and color to the environment

If the pose is left unspecified, a random collision-free pose is selected

A

def add_zone (

self,

env: Environment,
color: str,
scale: float =1,

Under review as a conference paper

pose: Pose = None

)
\"\"\" adds a zone of a given size and color to the environment
If the pose is left unspecified, a random pose in the workspace is selected

Ay

def add_cylinder (self, env: Environment, color: str = "red", scale: float = 0.5):
\"\" adds a cylinder of a given scale and color to the environment \"\"\"

task_setup_system_prompt = f£"""
You are writing python code to setup a simulated environment, translating user instructions
into executable code, based on an existing API.

You should adhere to the following types:
{get_core_types_text ()}

You may use the following API:
{task_setup_api_string}

EXAMPLES:
iidiisasii

task: add 3 red blocks and 3 blue blocks
response:
for _ in range(3):

self.add_block(env, "red")

for _ in range(3):
self.add_block (env, "blue")

(iiiiiiidi

task: add one big block and 4 blocks that are a quarter of the big blocks side length
response:
self.add_block(env, size=(0.08, 0.08, 0.08))
for _ in range (4):
self.add_block (env, size=(0.02, 0.02, 0.02))

iidiissii

Listing 4: Skill Parser prompts

generate_function_header_system_prompt = f"""

We are working in the context of controlling a robotic arm with python code.

The user proposes a certain skill they would like the robot to learn.

To enable this, you are supposed to translate this skill into a python function,

i.e. choose a clear, descriptive name for the function, choose appropriate arguments,
and write a clear, descriptive docstring.

For example:

USER: "place one block on top of the other"

RESPONSE:

def place_block_on_other_block (block: TaskObject, otherBlock: TaskObject) :
\"\"\" Places one block on top of the other block \"\"\"
pass

Do not try to implement the function yet, that happens later.
You should adhere to the following types:
{get_core_types_text ()}

The functions don’t need Workspace as an argument, since there is only one.
won

def generate_skill_ prompt (prompt, similar_skills: list[Skill]):
return f"""
you may use the following function headers as examples of what you are trying to generate:
{"\n".join([skill.description for skill in similar_skills])}

write a function header for the prompt: {prompt}.
nun

def refine_function_header_prompt (function_code, refinement):
return f£"""
Your role is to refine an existing python function, for example by adding a function argument or
changing the name. If the function is implemented (i.e. not just "pass"), you should also alter
the implementation accordingly, making as little changes and assumptions as possible.
Revise the following python function according to the user instructions:
{function_code}
Refinement prompt:
{refinement}

Do not make any assumptions.
nun

class ParsedList (BaseModel) :
parsed_list: list([str]

def parse_hint_to_list_prompt (hint):
return f"""

Under review as a conference paper

The user provided a list of tasks that are similar to the one you are currently
trying to solve, in a single string. Retrieve each of the task descriptions from
this string and return them as a list.

This is the string: {hint}

nn

Listing 5: Core primitives

the following functions require an initialised environment -
the agent doesn’t need to know anything about the environment, only what methods are available to it

we are responsible for properly initialising the environment, and ensuring that the agent has access to it
wan

IMPORTANT
- pybullet can only handle one server at a time, if this is not commented out, this is the environment being

used
wun

env = Environment (
"/Users/maxfest/vscode/thesis/thesis/environments/assets",
disp=True,
shared_memory=False,
hz=480,
record_cfg={
"save_video": False,
"save_video_path": "${data_dir}/${task}-cap/videos/",
"add_text": True,
"add_task_text": True,
"fps": 20,
"video_height": 640,
"video_width": 720,
by

S AR S HE R o HE e SR 9E o 9 e S 9

)
from tasks.tasks.place_blocks import Place5Blocks
task = Place5Blocks ()

env.set_task (task)
env.reset ()

1d_rotation_from point",

def get_objects() -> list[TaskObject]:
"""gets all objects in the environment"""
return env.task.taskObjects

def get_object_size(task_object: TaskObject) -> tuple[float, float, float]:
"""Returns the size of the given TaskObject as a tuple (width, depth, height)."""
return task_object.size

def get_object_pose(obj: TaskObject) -> Pose:
"""returns the pose (Point3d, Rotation) of a given object in the environment."""
return _from_pybullet_pose (env.get_object_pose (obj.id))

def get_object_color (task_object: TaskObject) -> str:
return task_object.color

def get_end_effector_pose() —-> Pose:
"""gets the current pose of the end effector"""
return _from_pybullet_pose (env.get_ee_pose())

def put_first_on_second(pickPose: Pose, placePose: Pose):
nun
This is the main pick-and-place primitive.
It allows you to pick up the TaskObject at ’pickPose’, and place it at the Pose specified by ’placePose’.
If ’'placePose’ is occupied, it places the object on top of ’'placePose.
nnn
return env.step (
action={
_to_pybullet_pose (pickPose),
_to_pybullet_pose (placePose),

def move_end_effector_to(pose: Pose, speed=0.001):
"""moves the end effector from its current Pose to a given new Pose"""
env.movep (_to_pybullet_pose (pose), speed=speed)

Under review as a conference paper

def get_bbox (obj: TaskObject) -> AABBBoundingBox:
"""gets the axis-aligned bounding box of an object - this is useful primarily for collision detection"""
aabb_min, aabb_max = env.get_bounding_box (obj.id)
return AABBBoundingBox (Point3D.from_xyz (aabb_min), Point3D.from_xyz (aabb_max)

def get_point_at_distance_and_rotation_from_point (
point: Point3D, rotation: Rotation, distance: float, direction=np.array([1l, 0, 0])

) —> Point3D:
"""compute a point that is at a sp ic ’distance’ from ’point’, at a specified ’'rotation’
The direction specifies the base direction in which to apply the rotation.
This is useful for placing objects relative to other objects.
wn
rotated_direction = rotation.apply(direction)

new_point = point.np_vec + distance * rotated_direction
return Point3D.from_xyz (new_point)

B.2 BASELINE MODEL SETUP

To ensure a fair comparison, we leverage state-of-the-art open-source code and language generation
repositories. We adapt the baseline implementations and provide wrappers for direct integration
with our APIs:

e CaP: https://github.com/google—research/google—-research/tree/
master/code_as_policies

* LoHoRavens: https://github.com/Shenggiang—Zhang/LoHo—Ravens
e DAHLIA: https://github.com/Ghiara/DAHLIA

We also consider Voyager [Wang et al.| (2023), which employs LLMs for automatic skill learning
and RAG retrieval in Minecraft. However, Voyager is built for a Java-based game environment, and
adapting it to our Python-based robotic control is impractical. To enable comparison, we design
a variation of our framework where LLMs provide feedback (LYRA (Ours) w/ LLM feedback),
keeping close to Voyager’s concept. Following prior works |Zhang et al.| (2023)); Meng et al.| (2025);
Wang et al.| (2023), the LLM evaluates task success by receiving RGB-D observations before and
after execution and providing corrective feedback if needed. In practice, we find that letting the LLM
directly discover missing capabilities and learn new skills is difficult, since robotic manipulation
involves more complex dynamics and spatial reasoning than Minecraft. Therefore, in this variation,
we do not attempt direct skill learning but instead rely on the learned skills and example databases
from our framework. The LLM focuses on reasoning about the current task, providing feedback to
adjust the plan, and retrieving relevant items from memory.

For ablation, we also test a version without the retrieval module (LYRA (Ours) w/o memory).
Here, learned skills and examples are randomly sampled from our databases and appended to the
prompt until the context window is filled. This simulates catastrophic forgetting in approaches that
only modify prompts with human-in-the-loop |Arenas et al.| (2024)). Specifically, we include 25 out
of 49 learned skills and 25 out of 86 examples for Ravens tasks. This setup allows us to study
how learned skills contribute when recent works rely solely on examples for in-context learning.
Although performance drops on more complex tasks due to limited access to the full skill library,
this variation still outperforms baseline models.

Since both the baseline models and our framework rely on few-shot in-context learning for reasoning
and task planning, we configure the few-shot examples and/or skills for the baselines as follows:

* Customized Ravens: All models, including ours, start with 9 core primitives as initial
skills, which are also appended to the baselines for in-context learning. For few-shot adap-
tation, all baselines are provided with the following example task plans and are expected to
generalize to unseen scenarios, either in an open-loop manner or under LLM guidance:

— stack blocks (4 colors)

— put the yellow block next to the green block

— build a {2 x 2 x 2} cube with 8 blocks

— build a {3 x 2 x 2} pyramid with 8 blocks

— put the red block in the middle of the workspace
— rotate the blue block by 45 degrees

https://github.com/google-research/google-research/tree/master/code_as_policies
https://github.com/google-research/google-research/tree/master/code_as_policies
https://github.com/Shengqiang-Zhang/LoHo-Ravens
https://github.com/Ghiara/DAHLIA

Under review as a conference paper

— move the end effector to the center of the workspace
— move the smallest block 10cm to the left
— arrange the blocks around a circle

* Franka Kitchen & Metaworld: All models, including ours, start with 9 core primitives as
initial skills (shared across both benchmarks via unified API wrappers). For few-shot adap-
tation, baselines are given the following example task plans and are expected to generalize
to new scenarios:

— reach a goal

— push a puck to a goal

— pick and place a puck in a goal
— open a door (revolute joint)

— close a window (slide joint)

B.3 RAVEN TASKS SETUP

In the Experiment section, we compare the success rates across 6 customized Ravens tasks as a case
study. The tasks are set up as follows:

* Place block next to reference: A scene with two large blocks (red and blue). The agent
must place the red block next to the blue one without collision. Alignment details (e.g.,
corner-to-corner) are not required for success. This task helps the agent acquire founda-
tional spatial skills.

* Stack blocks: A scene with four medium-sized colored blocks. The agent must stack all
blocks into a tower. Precise alignment is not required for success evaluation; towers with
random positions or orientations are also considered successful. This provides a base skill
for more complex behaviors.

* Build {i x j x k} structure: A scene with multiple medium-sized colored blocks. The
agent must build structures as instructed by the user. Two example plans are provided in
the prompt: (1) a {2 x 2 x 2} cube and (2) a {3 x 2 x 2} pyramid. The agent must also
generalize to unseen tasks: (3) a {4 x 3 x 3} pyramid, (4) a {1 x 3 x 3} wall, and (5) a
{4 x 4 x 1} base.

¢ Make a human face: A scene with several medium-sized colored blocks and one rectan-
gular block. The agent must build a circle and use two blocks plus the rectangle to form
facial features inside. Orientation details are not required for success.

* Build a Jenga tower: A scene with multiple rectangular blocks of uniform or mixed colors.
The agent must stack them in alternating orientations to construct a stable Jenga tower.

* Build a house: A scene with blocks of various colors and shapes. The agent must use
yellow blocks for the house base, brown blocks for the roof base, and red plates for the roof
tiles.

Under review as a conference paper

C REAL-WORLD EXPERIMENT SETUP

C.1 HARDWARE SETTING

In the real-world demonstrations, we employ a Franka FR3 manipulator paired with an Intel Re-
alSense D435i depth camera mounted at the table edge to evaluate the proposed framework. As
illustrated in Fig. the camera is positioned approximately 1 m in front of the robot, closely mir-
roring the configuration used in simulation. The robot’s base coordinate system, Oy, s, is defined at
the center of joint 0, with the x-axis directed toward the table and the z-axis aligned vertically upward
from the table surface. For object manipulation, the robot is equipped with a Franka two-finger grip-
per, in contrast to the simulation benchmark, which employs a suction gripper for pick-and-place
tasks. To ensure seamless deployment across embodiments and gripper types, we maintain con-
sistent primitive APIs between the real-world and simulated settings, enabling skills developed in
simulation to transfer directly to the physical robot.

Franka FR3

S

=
Figure S1: Real-world hardware setup. A Franka FR3 serves as the agent embodiment, with an Intel
RealSense D435i placed at the table edge to capture privileged scene information.

In our real-world setup, the calibrated extrinsic transformation between the camera and the robot
base frame is obtained as:

6.12323400e — 17 7.37277337¢ — 01 —6.75590208¢ — 01 1.06
peam _ 1.00000000e + 00 —4.51452165¢ — 17 4.13679693¢ — 17 0.16 @
base —0.00000000e + 00 —6.75590208¢ — 01 —7.37277337¢ — 01 0.61

0. 0. 0. 1.00

C.2 PERCEPTION

In simulation, privileged object information (such as type, size, pose, and color) can be directly ac-
cessed through predefined APIs, e.g., get_objects, get_object_size, and get_object_pose. In contrast,
acquiring such information in the real world is more challenging. To address this, we employ recent
vision foundation models to perceive and parse the task scene. For open-world object pose estima-
tion, we use Grounded SAM 2 Ren et al.[(2024) to detect target object masks and their bounding
boxes (with SAM 2.1.hiera.large and GroundingDINO.swint.ogc). The object center is estimated
by computing the mean of all mask pixels and projecting it back into 3D space. For orientation
estimation, we adopt FoundationPose [Wen et al.|(2024) in combination with object CAD models to
recover the object’s coordinate frame, particularly the x- and y-axis directions. By comparing the
angle differences between the object and robot base coordinate frames, we determine the object’s
rotation pose.

Under review as a conference paper

C.3 DEPLOYMENT

We utilize the official Franka ROS2 library on Ubuntu 22.04 to control the Franka FR3 manipulator.
The action space of our framework is defined in a 6-dimensional vector space, representing end-
effector motions composed of linear displacements along the x, y, and z axes, as well as rotational
changes in roll, pitch, and yaw. By default, Franka ROS2 relies on OMPL-based motion planning.
To better align with our simulation environment and enable more intuitive trajectory control, we
extend this setup by customizing a Cartesian linear motion planning instance, which allows for
straightforward and precise linear path execution. To ensure reliable operation in the real-world
hardware setup, we carefully configure the planning parameters, including detection tolerances,
velocity and acceleration scaling factors, and orientation/pose constraints. The complete parameter
configuration for our motion planning setup is summarized in Table [S2] which provides the exact
values adopted in our experiments.

Table S2: Hardware parameter setup

Parameters Values
RealSense x-axis detection tolarance 0.01 [m]
RealSense y-axis detection tolarance 0.01 [m]
RealSense z-axis detection tolarance 0.01 [m]
Feasible factor of cartesian linear planning 0.9

Max velocity scaling factor 0.1

Max acceleration scaling factor 0.1
Absolute x-axis orientation tolerance 0.02
Absolute y-axis orientation tolerance 0.02
Absolute z-axis orientation tolerance 0.02

Target pose constratint in x-axis 0.005 [m]
Target pose constratint in y-axis 0.005 [m]
Target pose constratint in z-axis 0.005 [m]
Workspace in x-axis +0.25 [m] - +0.8 [m]
Workspace in y-axis -0.55 [m] - +0.3 [m]
Workspace in z-axis +0.01 [m] - +0.65 [m]

The following is an example prompt for generating a task-specific code plan that can be deployed in
the ROS2 environment.

Listing 6: Demo task script structure for ROS2 deployment

from utils.core_types import Workspace
The task script should be sumamrized as fol

ws to enable a direct deployment in ROS2 environment:

def demo (record_cfg, camera_args):

Do not modify this part, because all task demo are execute under ROS2 environment node
rclpy.init ()

executor = MultiThreadedExecutor ()

env = RealWorldEnvironment (record_cfg=rec_cfg, camera_args=camera_args)
executor.add_node (env)

executor_thread = threading.Thread(target=executor.spin, daemon=True)
executor_thread.start (

env.reset ()

try
... You can implement your task specific code at here ...
... flat code ...
... call your skill function(...) to accomplish the task ...

Under review as a conference paper

You donot need to touch this part
except KeyboardInterrupt:
env.end_rec()
print ("\n T
except Exception as e:
env.end_rec()
print (£"\n Test failed: {str(e)
import traceback
traceback.print_exc()
finally:
try:
env.destroy_node ()
env.end_rec ()
except:
pass
executor.shutdown (
rclpy.shutdown ()

t interrupted by user")

Py

10

Under review as a conference paper

(i o i e i i
i e i
e i e i i i
i em e i i i
crin i o e i i

. . . .
. s s et

Figure S2: Snapshots of the “stack blocks” task and its variations under user-guided lifelong learn-
ing. (a) Stack 4 blocks corner-to-corner at the workspace center. (b) Stack 4 blocks with a 45°
rotation at the back-right table corner. (¢) Stack blocks by color, with the yellow block on top. (d)
Stack blocks from largest to smallest. (e) Stack blocks from smallest to largest. (f) Stack blocks into
a zigzag tower. (g) Build two towers sorted by color.

11

Under review as a conference paper

(o s i 2 i i

Figure S3: Snapshots of the task “place block next to reference.” (a)—(d) Basic skill that places a
red block next to a blue block with a 0.5 cm gap along different axes. (e)—(f) Extended capability
through user-guided lifelong learning, where the agent places red blocks on all sides of the blue
block to form a cross.

s s s g 5 i i g
i s g i s i
I RE————
s e st i s e
e . . g

Figure S4: Snapshots of the task “build {i * j * k} {structure}”. (a) Build a 2 x 2 x 2 cube. (b) Build
a3 x2x2pyramid. (c¢) Build a4 x 3 x 3 pyramid. (d) Builda 1 x 3 x 3 wall. (¢e) Builda4 x4 x 1
base.

A R

Figure S5: Snapshots of the “make smiley human face” task. (a)—(b) Basic skills “arrange_in_circle”
and “make_face_feature,” used to construct the circular outline and the eyes and mouth with blocks.
(c)-(k) Extended capability through user-guided lifelong learning, where the agent recalls and reuses
these basic skills to complete the full human face structure.

12

Under review as a conference paper

Figure S6: Snapshots of the “build jenga tower” task. (a)—(b) Basic skill “build_jenga_layer,” which
constructs a single Jenga layer in the required orientation. (c)—(k) Extended capability through
lifelong learning, where the agent reuses skills to stack layers and complete the Jenga tower.

Figure S7: Snapshots of Franka Kitchen. (a) pick-place kettle; (b) open slide-cabinet; (c¢) open
microwave; (d) open hinge-cabinet.

Figure S8: Snapshots of Meta-World. (a) Reach; (b) Push; (¢) Pick-place; (d) Reach-wall; (e) Push-
wall; (f) Pick-place-wall; (g) Door-open; (h) Faucet-open; (i) Drawer-close; (j) Button-press; (k)
Drawer-open; (1) Window-close; (m) Sweep-into; (n) Window-open; (0) Disassembly; (p) Basket-
ball; (q) Pick-out-of-hole; (r) Coffee-pull; (s) Assembly; (t) Hammer.

Table S3: Number of Corrections ({) for individual tasks in Franka Kitchen (FK) and MetaWorld
(MW). “-” means failed in the task.

Framework FK - kettle FK - slide cabinet FK - hinge cabinet ~ FK - microwave MW - reach MW - push MW - pick-place MW - reach-wall
DAHLIA 6 3 5 5 0 3 6 7
LYRA (Ours) w/o memory 4 1 8 7 0 9 6 2
LYRA (Ours) 2 2 4 3 0 5 5 3
MW - push-wall MW - pick-place-wall MW - di P MW - faucet-op MW -d 1 MW - button-p; MW - di P MW - wind

DAHLIA 6 - 2 3 2 4 3 2
LYRA (Ours) w/o memory 6 7 1 4 3 4 3 4
LYRA (Ours) 4 3 0 3 1 1 4 2

MW - p-int MW - wind Pt MW - di MW - MW - pick-out-of-hole MW - coffee-pull MW - assembly MW - hammer
DAHLIA 7 2 4 3 4 - - -
LYRA (Ours) w/o memory 7 3 2 1 5 3 9 4
LYRA (Ours) 3 0 1 1 3 2 4 6

13

Under review as a conference paper

E BUILD A HOUSE

Figure S9: Snapshots of “build a house”.

The implementation details of the skill “build a house” are demonstrated as follows:

Listing 7: Function build_house

from utils.core_types import Workspace

def build_house() :
"""Builds a house in the middle of the workspace.
Assumes all the necessary objects are available in the workspace,
and moves them out of the way before building the house.
nun
objects = get_blocks_by_color()
base_blocks = get_blocks_by_color ("yellow")

if len(base_blocks) != 14:
raise Exception("Not enough blocks to build the house™)
roof_base = identify_roof_base (objects)

if not roof_base:
raise Exception("Can’t find the roof base")
roof_beam = identify_beam_block (objects)
if not roof_beam:
raise Exception("Can’t find the roof beam")
roof_tiles = identify roof_tiles (objects
if not roof_tiles:
raise Exception("Can’t find the roof til

Move objects out of the way
Move base blocks to back edge of workspace
back_left = Workspace.back_left
make_line_with_blocks (
base_blocks, Pose(back_left, Rotation.from_euler("z", np.pi / 2))

)

Move roof tiles to right side of workspace
back_right = Workspace.back_right
make_line_with_blocks (roof_tiles, Pose(back_right, Rotation.identity()))

Move roof beam to front edge of workspace
front_left = Workspace.front_left
put_first_on_second(
get_object_pose (roof_beam), Pose(front_left, Rotation.identity())
)

Move roof base to middle of the front edge
front_middle = Point3D (Workspace.front_left.x, Workspace.middle.y, 0)
put_first_on_second(

get_object_pose (roof_base), Pose(front_middle, Rotation.identity())
)

Build the house
middle = Workspace.middle
build_house_base (base_blocks, Pose(middle, Rotation.identity()))

assemble_roof (roof_base, roof_beam, roof_tiles, Pose(middle, Rotation.identity()))

Listing 8: Function build_house_base

def build_house_base (blocks: list[TaskObject], pose: Pose):
"""Constructs the base of a house in the workspace using a list of block
TaskObjects starting from a specified pose.
Args:
blocks (list[TaskObject]): A list of blocks to use in forming the base of a house.
Each block should have uniform attributes such as size and color.
startingPose (Pose): The starting position and orientation in the workspace from
which to begin constructing the base of the house.

14

Under review as a conference paper

nn

block_width = get_object_size (blocks[0]) [0]

startingPose = Pose(
pose.position.translate (Point3D (1.5 % block_width, -block_width, 0)),
pose.rotation,

make the front left corner of the house
stack_blocks (blocks[0:2], startingPose)

leave a gap of one block width
next_stack_position = get_point_at_distance_and_rotation_from_point (
startingPose.position,
startingPose.rotation,
block_width * 2,
direction=(0, 1, 0),
)
stack_blocks (blocks[2:4], Pose(next_stack_position, startingPose.rotation))

make lines towards the back of the workspace from each of the stacks
make_line_of_blocks_next_to(blocks[4:6], blocks[0], back™)
make_line_of_blocks_next_to(blocks[6:8], blocks[3], back™)

make the back wall of the house
back_wall_start_pos = get_point_at_distance_and_rotation_from_point (
get_object_pose (blocks[5]) .position,
startingPose.rotation,
block_width + 0.005,
direction=(-1, 0, 0),

build_structure_from_blocks (
blocks[8:14], (1, 3, 2), Pose(back_wall_start_pos, startingPose.rotation)

Listing 9: Function identify_roof_tiles

def identify roof_tiles(objects: list[TaskObject]) -> list[TaskObject]:
"""Tdentifies and returns a list of TaskObjects that are categorized as roof tiles
from a given list of objects. A roof tile is characterized by having one dimension smaller
than 0.02 and being red in color.
Args:
— objects (list[TaskObject]): A list of TaskObjects to be analyzed for identification of roof tiles.
Returns:
— list[TaskObject]: A list of TaskObjects that are identified as roof tiles,
based on the specified characteristics.

nn

roof_tiles = []

for obj in objects:
if obj.color.lower() =
roof_tiles.append(obj)
return roof_tiles

and any(dim < 0.02 for dim in obj.size):

Listing 10: Function identify_beam_block

def identify_beam_block (blocks: list[TaskObject]) -> TaskObject:
"""Identifies the beam block from a list of blocks.
A beam block is defined by the following criteria:
— It must have the color ’'brown’.
- It has one square side, meaning two side lengths must be the same.
— The third side should be at least 3 times as long as the square sides.
Args:
blocks (list[TaskObject]): The list of block objects to be evaluated.
Returns:
TaskObject: Returns the TaskObject identified as a beam block.

If no beam block is found, returns None.
nun

for block in blocks:

if block.color != "b

continue
width, depth, height = sorted(block.size)
if width == depth and height >= 3 x width:

return block
return None

Listing 11: Function identify_roof_base

def identify_roof_base(objects: list[TaskObject]) -> TaskObject:
"m"w Tdentifies and returns the TaskObject that serves as the base for a roof in a given list of objects.
A roof base 1is characterized by being brown in color and by having two dimensions that are at least
10 times larger than the third dimension.
Args:
- objects (list[TaskObject]): A list of TaskObjects to be analyzed for identification of the roof base.
Returns:

15

Under review as a conference paper

— TaskObject: The TaskObject identified as the roof base, based on the specified characteristics.

nn

for obj in objects:

size = obj.size
if obj.color == ’br 1 # Changed from ’red’ to ‘brown’
dimensions = sorted(size)

if dimensions[0] * 10 <= dimensions[l] and dimensions[0] * 10 <= dimensions[2]:
return obj
return None

Listing 12: Function get_blocks_by_color

get_blocks_by_color (color: str = None) -> list[TaskObject]:

nnn

Retrieves all block objects in the workspace.

If a specific color is provided, only blocks of that color are retrieved.

Args:
color (str, optional): The color of the blocks to retrieve.

If not specified, retrieves all blocks regardless of their color.
Returns:

list[TaskObject]: A list of TaskObject instances representing the blocks in the workspace.
nnn

all objects = get_objects()

if color:

return [obj for obj in all_objects if obj.objectType == 'bl and obj.color == color]
else:
return [obj for obj in all_objects if obj.objectType == 'b
Listing 13: Function assemble_roof
def assemble_roof (base: TaskObject, roof_beam: TaskObject,

roof_tiles: list[TaskObject], overall pose: Pose):
nun
Assembles a roof structure using a designated base, a roof beam, and a list of roof tiles,
starting from a given overall pose.The base acts as the foundation while the roof beam provides
structural support and the roof tiles are placed on top to complete the structure.
Args:
- base (TaskObject): The TaskObject representing the base upon which the roof is built.
- roof_beam (TaskObject): The TaskObject representing the beam supporting the roof tiles
between the base and the tiles.
- roof_tiles (list[TaskObject]): A list of TaskObjects representing the roof tiles to
be placed on the beam.

- overall_pose (Pose): The Pose indicating the overall position and orientation for the roof assembly.

nn

Place base in the middle of the workspace
put_first_on_second (get_object_pose (base), overall_pose)
Compute the pose for the roof beam
base_pose = get_object_pose (base)
beam_pose = Pose(
Point3D (
base_pose.position.x,
base_pose.position.y,
base_pose.position.z + (base.size[2] / 2) + (roof_beam.size[2] / 2)
)y
base_pose.rotation
)
Place beam on the base
put_first_on_second(get_object_pose (roof_beam), beam_pose)
Compute the pose for the roof tiles on top of the beam
beam_pose = get_object_pose (roof_beam)
roof_tiles_pose = Pose(
Point3D(
beam_pose.position.x,
beam_pose.position.y,
beam_pose.position.z + roof_beam.size([2] / 2 + 0.01
)y
beam_pose.rotation
)
Place roof tiles
place_roof_tiles (roof_tiles, roof_tiles_pose)

Listing 14: Function build_structure_from_blocks

from utils.core_types import =

def

build_structure_from_blocks (
blocks: list[TaskObject],
dimensions: tuple[int, int, int],
pose: Pose,

gap: float = 0.005,

nn

Assembles a structure using individual block TaskObjects based on the specified dimensions
and the given pose. The blocks should be positioned to form the desired structure starting
from the given pose, which specifies the position and orientation of the first block placed.
Assumes that the list ’blocks’ contains enough block TaskObjects to construct the specified
structure. Assumes the blocks are homogeneous in size.

16

Under review as a conference paper

Arranges the blocks to form a 3D structure of the given dimensions.

wun

if len(dimensions) != 3:
raise ValueError ("D

block_size = get_object_size (blocks[0])
block_index = 0

for z in range (dimensions[2]):
layer_blocks = blocks[block_index : block_index + dimensions[0] * dimensions[1]
layer_start_position = get_point_at_distance_and_rotation_from_point (
pose.position,
pose.rotation,
(block_size[2] + gap) * z,
direction=np.array ([0, 0, 11),
)
layer_start_pose = Pose(layer_start_position, pose.rotation)
for y in range(dimensions[1]):
row_blocks = layer_blocks[y * dimensions[0] : (y + 1) * dimensions[0]]
row_start_position = get_point_at_distance_and_rotation_from_point (
layer_start_pose.position,
layer_start_pose.rotation,
(block_size[l] + gap) * y,
direction=np.array ([0, 1, 0]),
)
row_start_pose = Pose(row_start_position, layer_start_pose.rotation)
make_line_with_blocks (row_blocks, row_start_pose, gap=gap)
block_index += dimensions[0] * dimensions[1]

Listing 15: Function place_roof _tiles

def place_roof_tiles(roof_tiles: list[TaskObject], specific_pose: Pose):
nun
Places exactly six roof tiles starting from a specific pose.
Arranges the roof tiles evenly from the specified starting position and orientation.
Ensures that the list of roof tiles has exactly six elements before proceeding.
Args:
- roof_tiles (list[TaskObject]): A list of TaskObjects identified as roof tiles.
Must contain exactly six tiles.
— specific_pose (Pose): The Pose representing the starting position
and orientation for tile placement.
wnn
if len(roof_tiles) != 6:

raise ValueError ("Th

tile_width = roof_tiles[0].size[0]

e must be

Rotate the tiles by 90 degrees relative to the starting pose
relative_rotation = specific_pose.rotation = Rotation.from_euler(’z’, 90, degrees=True)
adjusted_pose_left = Pose(
Point3D(specific_pose.position.x, specific_pose.position.y-tile_width/2, specific_pose.position.z),
relative_rotation
)
put_first_on_second(get_object_pose (roof_tiles[0]), adjusted_pose_left)
Place one block on either side of the first block on the left
move_block_next_to_reference (roof_tiles[1l], roof_tiles[0], axis v’, gap=0.005)
move_block_next_to_reference (roof_tiles[2], roof_tiles[0], axis='y’, gap=0.005)
Place the first block of the second set to the right (x direction) of the first block of the first set
move_block_next_to_reference (roof_tiles[3], roof_tiles[0], axis='x’, gap=0.005)
Place one block on either side of the first block of the second set
move_block_next_to_reference (roof_tiles[4], roof_tiles[3], axis=’-y’, gap=0.005)
move_block_next_to_reference (roof_tiles[5], roof_tiles[3], axis=’'y’, gap=0.005)

Listing 16: Function make_line_of_blocks_next_to

def make_line_of_blocks_next_to(blocks: list[TaskObject], referenceBlock: TaskObject,
direction: str, gap: float = 0.005):
nun
Arranges the given blocks in a straight line next to a reference block in the
specified direction.
Args:
blocks (list[TaskObject]): A list of TaskObject instances representing
the blocks to be arranged in a line.
referenceBlock (TaskObject): The TaskObject representing the reference
block next to which the line will start.
direction (str): A string indicating the direction in which to align the line of blocks.
Valid directions are "front", "back", "left", and "right".
gap (float): The gap between the reference block and the first block in the line,
and between consecutive blocks.
This function will arrange the specified blocks in a single line, starting from the chosen
side of the reference block, following the given direction along the x or y axis in the workspace,

depending on the specified direction.
nun

axis = "’

if direction == "f
axis = "x

elif direction == "back":
axis = ' -x

elif direction ==
axis = "y’

’

’

17

Under review as a conference paper

elif direction

axis = "y’
else:

raise ValueError ("Invalid ¢)¢ ded " fr tr, ! , "left’, ’right
current_reference = referenceBlock

for block in blocks:
move_block_next_to_reference (block, current_reference, axis=axis, gap=gap)
current_reference = block

R

Listing 17: Function make_line_with_blocks

from utils.core_types import TaskObject, Pose
from utils.core_primitives import (

get_object_pose,

get_object_size,

put_first_on_second,
get_point_at_distance_and_rotation_from_point,

make_line_with_blocks (
blocks: list[TaskObject], start_pose: Pose, gap: float = 0.005

"""Arranges the given blocks in a straight line starting from the specified start pose.
Args:
blocks (list[TaskObject]): A list of block objects to be arranged in a line.
start_pose (Pose): The pose in the workspace where the line of blocks should start.
The position will be used as the starting point, and the rotation
will be used as the direction vector.
gap (float): The gap between consecutive blocks.
Note:
The function places the blocks in the order in which they are passed.
nun
current_block = blocks[0]
put_first_on_second(get_object_pose (current_block), start_pose)
for block in blocks[1:]:
Get the current pose of the block
move_block_next_to_reference (block, current_block, axis="x", gap=gap)
current_block = block

Listing 18: Function stack_blocks

stack_blocks (blocks: list[TaskObject], start_pose: Pose):
"""Stacks a sequence of blocks on top of each other starting from a specified pose.
Args:
blocks: A list of TaskObject instances representing the blocks to be stacked.
start_pose: A Pose indicating the initial position and orientation of the bottom block.
wun
Check if there’s already a block in the starting position
all_blocks = get_objects()
for block in all_blocks:

block_pose = get_object_pose (block)

Check if block is close enough to the starting position, considering some tolerance

if |
abs (block_pose.position.x - start_pose.position.x) < 0.05 and
abs (block_pose.position.y - start_pose.position.y) < 0.05 and
abs (block_pose.position.z - start_pose.position.z) < 0.05

)
Move the block to the top-left corner (back_left)
workspace = Workspace ()
top_left_position = workspace.back_left
put_first_on_second(block_pose, Pose(top_left_position, Rotation.identity()))
break

current_pose = start_pose

for block in blocks:
pick_pose = get_object_pose(block) # Get current pose of the block
put_first_on_second(pick_pose, current_pose) # Place block on the current pose
Get the size of the block to calculate the new position for the next block
block_size = get_object_size (block)
Update the current pose to place the next block on top
current_pose = Pose(
position=Point3D (
x=current_pose.position.x,
y=current_pose.position.y,
z=current_pose.position.z
+ block_size[2], # Increment z by block height
)y
rotation=current_pose.rotation,

Listing 19: Function move_block_next_to_reference

def

move_plock_next_to_reference (
block: TaskObject, referenceBlock: TaskObject, axis: str = "x", gap: float = 0.005

"""Moves the block next to the referenceBlock such that their edges are aligned along
the specified axis with a small gap.

18

Under review as a conference paper

Args:
block (TaskObject): The block object to be moved and aligned.
referenceBlock (TaskObject): The block object that remains stationary and serves as the reference.
axis (str): The axis along which to align the blocks. Should be ’'x’, ’"-x’, ’'y’, or '-y’.
gap (float, optional): The small gap to leave between the blocks. Defaults to 0.005 meters.
Raises:
ValueError: If the specified axis is not ’x’, '-x', 'y’, or '-y’.
nnn
if axis not in ["x", "-x" s "y

raise ValueError ("Axis must be either
Get the pose and size of the blocks
block_pose = get_object_pose (block)
reference_pose = get_object_pose (referenceBlock)
reference_size = get_object_size (referenceBlock)
block_size = get_object_size (block)
Determine the offset distance based on the axis

’ Ty, or 'T-y’.")

if axis == "x":
offset = (reference_size[0] + block_size[0]) / 2 + gap
direction = np.array([1l, 0, 0]) # positive x-axis direction
elif axis "ex":
offset (reference_size[0] + block_size[0]) / 2 + gap
direction = np.array([-1, 0, 0]) # negative x-axis direction
elif axis == "y":
offset = (reference_size[l] + block_size[l]) / 2 + gap

direction = np.array ([0, 1, 0]) # positive y-axis direction
elif axis "oy

offset = (reference_size[l] + block_size[l]) / 2 + gap

direction = np.array ([0, -1, 0]) # negative y-axis direction

.

rotated_direction = reference_pose.rotation.apply(direction)

new_position = reference_pose.position.np_vec + offset * rotated_direction
new_position = Point3D.from_xyz (new_position)

New pose for the block with the same rotation as the reference

new_pose = Pose (position=new_position, rotation=reference_pose.rotation)

Move the block

put_first_on_second (block_pose, new_pose)

Listing 20: Applied core primitives

get_object_pose(obj: TaskObject) -> Pose:
"""returns the pose (Point3d, Rotation) of a given object in the environment.
return _from_pybullet_pose (env.get_object_pose (obj.id))

put_first_on_second(pickPose: Pose, placePose: Pose):

This is the main pick-and-place primitive.

It allows you to pick up the TaskObject at ’pickPose’, and place it at the Pose specified by ’placePose’.

If ’'placePose’ is occupied, it places the object on top of ’'placePose.
nnn
return env.step(

action={
_to_pybullet_pose (pickPose),
_to_pybullet_pose(placePose),

get_object_size(task_object: TaskObject) -> tuple[float, float, float]:
"""Returns the size of the given TaskObject as a tuple (width, depth, height).
return task_object.size

get_object_color (task_object: TaskObject) -> str:
"""Returns the color of the given TaskObject."""
return task_object.color

get_objects () -> list[TaskObject]:
"""gets all objects in the environment"""
return env.task.taskObjects

19

Under review as a conference paper

F REAL-WORLD DEMONSTRATIONS

Figure S13: Real-world demonstration for task “build a temple”.

20

Under review as a conference paper

Figure S19: Real-world demonstration of the “stack blocks” task, showcasing the performance of
the baseline models, e.g., CaP or DAHLIA.

21

	Introduction
	Method
	Preliminaries
	Preference-aligned Skill Acquisition
	Lifelong Learning-oriented Capability Extension
	Task-specific-oriented Retrieval and Planning

	Experiments
	Experiment setup
	Skill learning with human-in-the-loop
	Can you build a house?
	Real-world performance

	Related works
	Conclusion
	Appendix
	Pseudo code of algorithm
	Framework setup
	Framework prompting
	Baseline model setup
	Raven tasks setup

	Real-world experiment setup
	Hardware setting
	Perception
	Deployment

	Simulation performance
	Build a house
	Real-world demonstrations

